
Part of **SPRINGER NATURE**

Nano

a nature research solution

肖娟秀 (Ph. D) 产品经理 2017年10月26日

natureresearch

2015年5月两个科学出版商宣布合并

SPRINGER NATURE

- Nature Research
- Springer Research
- Open Research

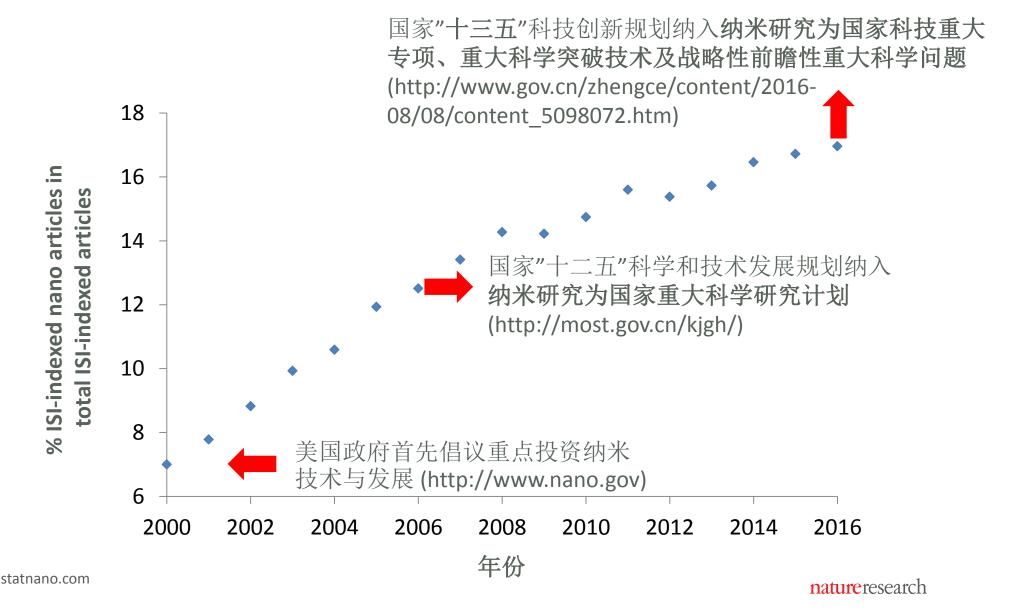
Nano是在2016年6月15日以Nature Research组合的一部分推出

What is Nano?

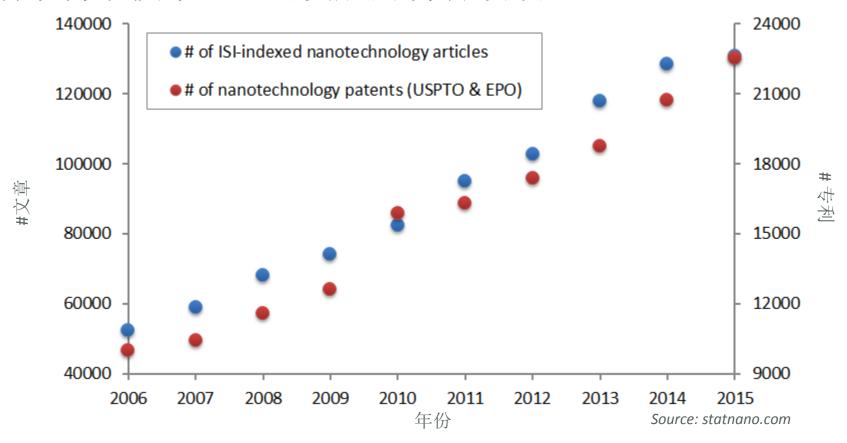
A comprehensive nanotechnology-specific database has been launched as part of the Nature Research portfolio.

On 15 June 2016, Springer Nature launched Nano, the first non-journal-type product to be marketed by the company within the Nature Research portfolio. Nano is a database, but it is also a discovery tool. It is designed to provide researchers in academia and industry a simple way to retrieve information on nanomaterials and nanodevices. Over 200,000 profiles have been created, and each is based on information extracted mainly from research articles published in 30 journals. By searching the database, users are presented with at-a-glance information on different types of materials or devices related to the keyword used, including composition and properties, and including the source articles and patents from which the information has been extracted.

Realizing a comprehensive catalogue of nanomaterials and nanodevices is important, particularly now, as after

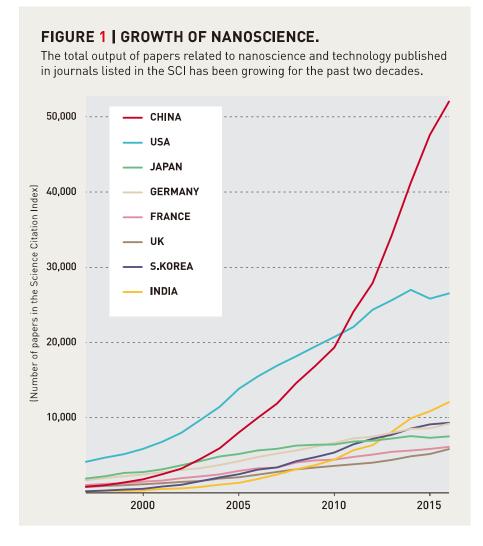

a few decades of intense research to understand the fundamental properties of nanostructures, efforts have now shifted to incorporate such structures in commercial devices. But creating a comprehensive catalogue of nano-objects is no easy task. The main challenge is, and possibly will always be, deciding what goes in and what stays out. What size can be used as a threshold under which a material becomes a nanomaterial? The only useful answer is that a nanomaterial has qualitatively different physical and chemical properties from its bulk counterpart, and the size at which this happens varies with each material. To complicate matters, nanomaterials are studied by physicists, engineers, chemists and biologists, and information is scattered in a wide variety of publications.

A product such as Nano can help. By collecting information from research articles and patents, it follows the definition of nanomaterials and nanodevices used by the community. Furthermore, the information is not only gathered from specific nanoscience and nanotechnology journals, such as ours or Nano Letters, but also from journals such as Science, Angewandte Chemie International Edition and Advanced Materials, to list only a few.

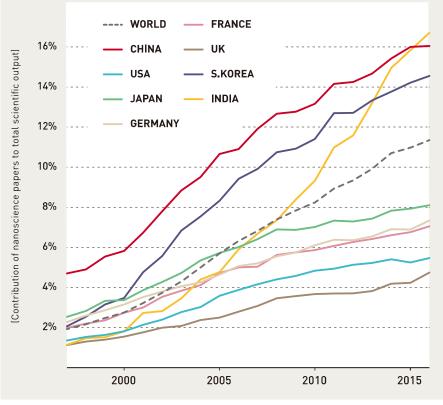

Nano will grow to include more comprehensive information in the future. The plan for the rest of 2016 is to include information from a larger number of journals and to keep updating the database by including information from new publications. In the meantime, the product is ready to be used and we invite you to explore its functionalities, which can be done via institutional trials at http://nano.nature.com/.

Corrected after print: 20 July 2016

纳米科技在国家战略里的重要性



纳米科学技术—飞速发展的科研领域


- 海量的信息和数据分散在各种期刊和专利之中,为了有效的管理和高效的沟通,亟需对信息进行甄别,分类以及索引。
- 对于"纳米材料",目前并没有一个标准的术语命名。

纳米科技发展概览

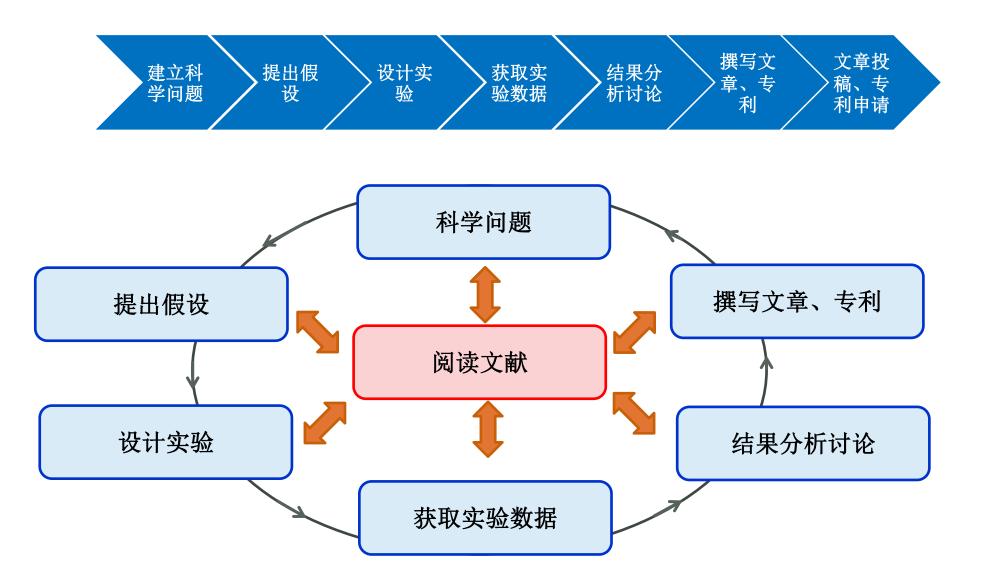


FIGURE 2 | CONTRIBUTION OF NANOSCIENCE TO TOTAL SCIENTIFIC OUTPUT.

Papers related to nanoscience and technology represents an ever growing fraction of the total scientific output of most countries. For China, South Korea and India, that fraction is now well above the global average.

科研工作流程

纳米领域科研人员面临的搜索难题

1 (命中率低:搜索结果大量不相关

2 步骤繁琐:确认相关性需要进入到原文

3 来源分散:相同或相似的纳米材料/器件信息分散在不同期刊

5 **合成步骤缺少简介:** 纳米材料的合成方法和步骤的描述信息量大,阅读耗时、 难以辨别与比较

Nano通过用户验证-----可靠的纳米搜索平台

- 基于218个网上访问对象和28位深入电话采访的早期市场调研结果,我们得到一致的反馈"纳米科学研究亟需一款专注于该领域的检索工具",这让我们坚信启动了Nano项目有重大意义。
- 我们已经展开了多轮用户体验测试,来验证平台功能有效性和实用性,以确保 Nano真正地为用户创造价值。与用户的互动从未止步......

到目前为止,已有110位分布全球的纳米科研者参与用户测试。

Nano顾问委员会(更多在加入)

Jens Kroeger, PhD Chief Technology Officer Raymor industries and NanoIntegris

Juan Hinestroza, PhD Assoc. Prof. Cornell U.

Yanlin Song, PhD Professor Inst. Chem., CAS

Omid Farokhzad, MD
Assoc. Prof.
Brigham and Women's Hospital
Harvard Medical School

Zhiyong Tang, PhD Prof. of Materials Chemistry NCNST, CAS

Harald Krug, Prof.
Swiss Federal Laboratories for
Materials Science and Technology

Seeram Ramakrishna, PhD Prof. of Faculty of Engineering, NUS

natureresearch

Case study #1 – A general search

nanosheets and electrical conductivity

Articles

About 79,900 results (0.12 sec)

Any time

Since 2017 Since 2016

Since 2013

Custom range...

Sort by relevance

Sort by date

✓ include patents✓ include citations

Create alert

Synthesis of graphene-based **nanosheets** via chemical reduction of exfoliated graphite oxide

S Stankovich, DA Dikin, RD Piner, KA Kohlhaas... - carbon, 2007 - Elsevier

... Synthesis of graphene-based **nanosheets** via chemical reduction of exfoliated graphite oxide. ... By nature, GO is **electrically** insulating (see below) and thus cannot be used, without further ... Notably, it has been demonstrated that the **electrical conductivity** of GO (and presumably its ...

☆ 99 Cited by 8840 Related articles All 20 versions

☆ 切り Cited by 6272 Related articles All 15 versions.

Processable aqueous dispersions of graphene nanosheets

<u>D Li</u>, MB Müller, S Gilje, <u>RB Kaner</u>... - Nature nanotechnology, 2008 - nature.com ... work may lead to the development of a new generation of antistatic coatings that can combine **electrical conductivity** with transparency ... Synthesis of graphene-based **nanosheets** via chemical reduction of exfoliated graphite oxide. ... **Electric** field effect in atomically thin carbon films. ...

Preparation and **electrical properties** of graphene **nanosheet**/Al 2 O 3 composites

Two-dimensional nanosheets produced by liquid exfoliation of layered materials

JN Coleman, M Lotya, A O'Neill, SD Bergin... - ..., 2011 - science.sciencemag.org
... Tae Kim. School of Electrical Engineering, Korea University, Seoul, South Korea. ... 1 Optical characterization of nanosheet dispersions. ... We performed transmission electron microscopy (TEM) analysis on our dispersions, typically observing 2D flakes consisting of thin nanosheets. ...

\$\frac{1}{2}\$ \text{9D}\$ Cited by 3049 Related articles All 16 versions

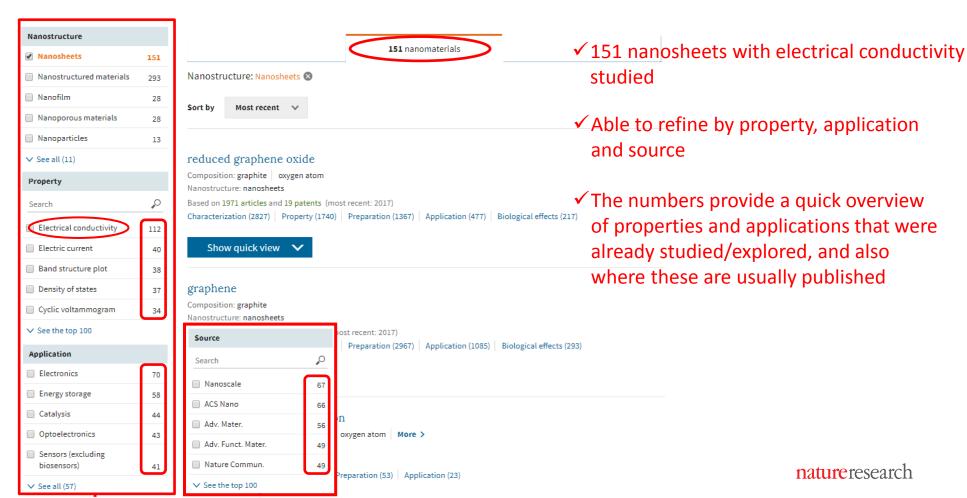
Comparison of **electrical properties** between multi-walled carbon nanotube and graphene **nanosheet**/high density polyethylene composites with a segregated network...

J Du, L Zhao, Y Zeng, L Zhang, F Li, P Liu, C Liu - Carbon, 2011 - Elsevier Multi-walled carbon nanotube (MWCNT)/high density polyethylene (HDPE) and graphene nanosheets (GNS)/HDPE composites with a segregated network structure were prepared by alcohol-assisted dispersion and hot-pressing. Instead of uniform dispersion in polymer

☆ 切り Cited by 194 Related articles All 15 versions

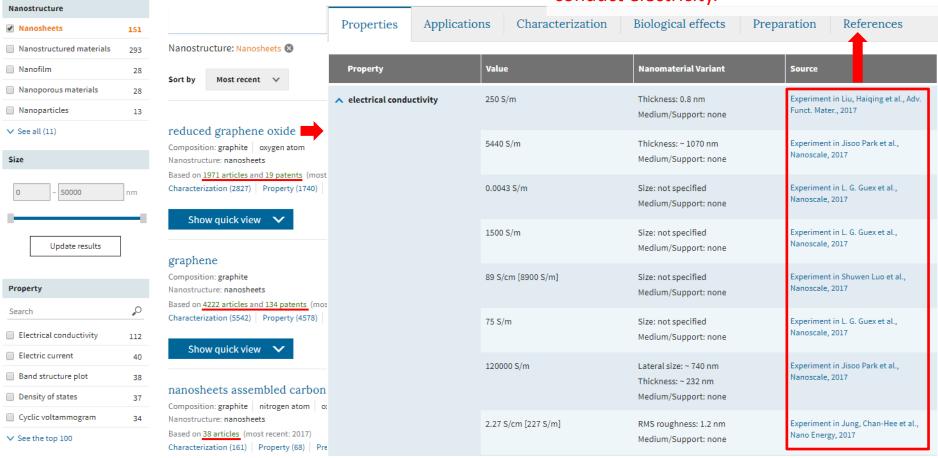
There are so much to read!!!


Are they talking about the same thing?


If not, what are the differences?

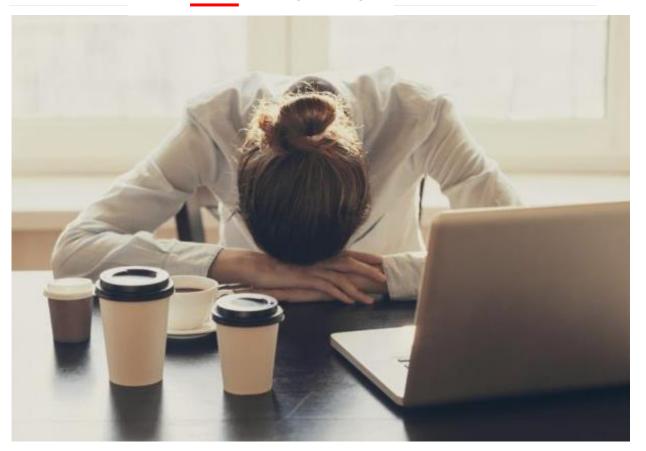
Anywhere I find a quick overview and drill down from there rather than going through these?

The Nano user journey for a general search



The Nano user journey for a general search

Users may go to literatures of interest for further details and/or find other data such as applications, characterization and preparation referring to the same nanomaterial in the summary, or explore other nanosheets that conduct electricity.


Case study #2 – A specific search

discharge capacity of lithium iron phosphate nanoparticles

+ /

Articles

About 20,800 results (0.11 sec)

Relevancy

Nope

Nope

Not likely

Likely

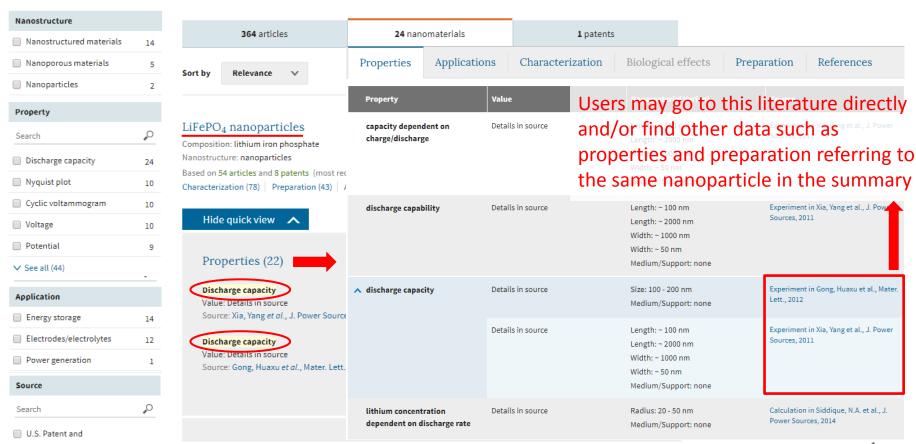
Unsure

Fabricating genetically engineered high-power **lithium-ion** batteries using multiple virus genes

YJ Lee, H Yi, WJ Kim, K Kang, DS Yun... - ..., 2009 - science.sciencemag.org

... Lithium-ion battery electrodes store and release electrical energy by insertion and extraction of Li + ions and electrons ... has been constrained due to kinetic limitations, which result in poor charge- and discharge-rate capability and fading of capacity upon prolonged ...

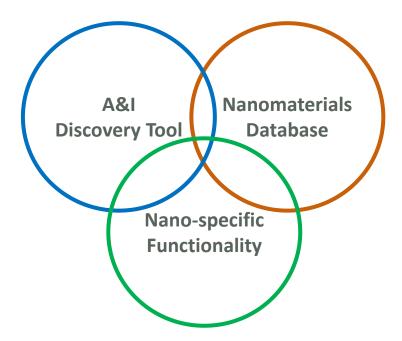
☆ ワワ Cited by 573 Related articles All 12 versions

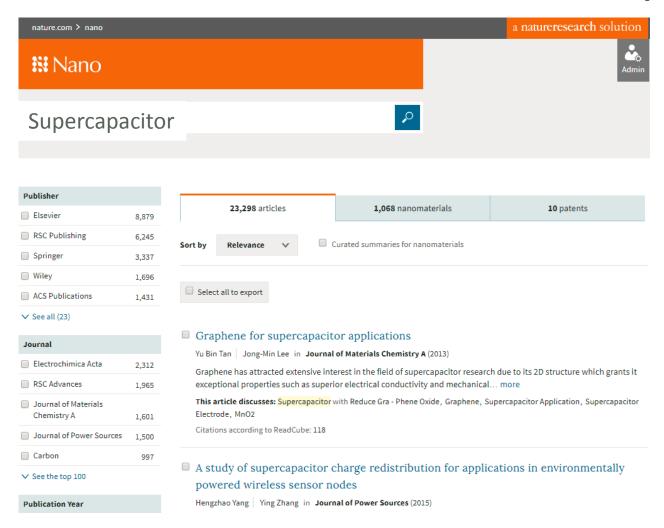

Not likely

natureresearch

The Nano user journey for a general search

discharge capacity of lithium iron phosphate nanoparticles


References


a natureresearch solution

How Nano works for you

 Advance your daily research with access to our machine-learned index of nanotechnology articles by AAAS, ACS, Elsevier, RSC, Springer Nature, Wiley and more

Centralized nanotech-related articles in one space

- Keep up to date without going to multiple journal websites and receiving multiple content alerts
- Gain quick insights including materials, properties and applications closely related to search input

Gain insight into the content that is closely related to the search input

O2 adsorption dependent photoluminescence emission from metal oxide nanoparticles

Amir R. Gheisi | Chris Neygandhi | Andreas K. Sternig ... in Physical Chemistry Chemical Physics (2014)

Optical properties of metal oxide nanoparticles are subject to synthesis related defects and impurities. Using photoluminescence spectroscopy and UV diffuse reflectance in conjunction with Auger electron... more

This article discusses: Metal Oxide Nanoparticles with Metal, Nanoparticles, Oxide, Property, Annealing and Adsorption with Surface, Nanoparticles, Emission, Photoluminescence, Metal

Citations: 4

O2 adsorption dependent photoluminescence emission from metal oxide nanoparticles

Amir R. Gheisi | Chris Neygandhi | Andreas K. Sternig ... in Physical Chemistry Chemical Physics (2014)

Optical properties of metal oxide nanoparticles are subject to synthesis related defects and impurities. Using photoluminescence spectroscopy and UV diffuse reflectance in conjunction with Auger electron... more

This article discusses: ZnO Nanoparticles with Nanoparticles, Annealing, Oxygen, Synthesis, Emission and MgO Nanoparticles with Nanoparticles, Annealing, Surface, Photoluminescence, Adsorption

Citations: 4

Insights from the same article could be different based on the search inputs

Quick overview of nanomaterial data curated from multiple literatures - **Properties**

gold nanoparticles

Composition: gold

Nanostructure: nanoparticles

Based on 3710 articles and 113 patents (most recent: 2017)

Characterization (3432) Preparation (2451) Property (1871) Application (871) Biological effects (724)

▼ Properties

Search for a property

General physical and chemical properties

Property	Value	Nanomaterial Variant	Source
 1,4-aminothiophenol detection analytical enhancement factor 	Details in source	Size: 30 - 60 nm Tip size: 20 nm Medium: water Support: none	Experiment in Boris Khlebtsov et al., J. Nanopart. Res., 2014
1,4-aminothiophenol detection limit	Details in source	Core size: 100 nm Size: 130 - 170 nm Tip size: 30 nm Medium: water Support: none	Experiment in Boris Khlebtsov et al., J. Nanopart. Res., 2014
100/111 surface energy ratio	Details in source	Size: 1 - 2 nm Medium/Support: none	Calculation in Almora-Barrios, Neyvis et al., Nano Lett., 2014
110/111 surface energy ratio	Details in source	Size: 1 - 2 nm Medium/Support: none	Calculation in Almora-Barrios, Neyvis et al., Nano Lett., 2014
∨ absorbance	Details in source	Diameter: ~ 15.11 - 29.67 nm Medium: water Support: none	Experiment in Duy, Janice et al., J. Nanopart. Res., 2010

Quick overview of nanomaterial data reported in multiple literatures - Applications

gold nanoparticles

Composition: gold

Nanostructure: nanoparticles

Based on 3710 articles and 113 patents (most recent: 2017)

Characterization (3432) Preparation (2451) Property (1871) Application (871) Biological effects (724)

▼ Applications

Search for an application area

Area	Application	Nanomaterial Variant	Source
agrochemicals	Gloriosa superba seed germination	Size: 5 - 50 nm Medium: Terminalia arjuna extract Support: none	Confirmed in K. Gopinath et al., J. Nanostruct. Chem., 2014
✓ analysis methods	substrate for surface-enhanced Raman scattering (SERS)	Diameter: 39.5 - 75.5 nm Medium/Support: none	Confirmed in Tian, Shu et al., Nano Lett., 2017
∨ catalysis	interfacial catalytic reactions	Core diameter: 65 nm Diameter: ~ 75 nm Spine bottom diameter: 15 nm Spine length: 5 nm Spine top diameter: 5 nm Medium/Support: none	Confirmed in Dan Wang et al., Nanoscale, 2017
▼ coatings	plasmonic substrate	Diameter: 20 - 40 nm Interparticle distance: 5 - 10 nm Medium/Support: none	Confirmed in Lin, Linhan et al., ACS Nano, 2016
▼ cosmetics/sunscreens/lotions	cosmetology	Size: not specified Medium: hydrogen chloride aqueous solution Support: none	Proposed in Anna Dzimitrowicz et al., J. Nanopart. Res., 2015

Quick overview of nanomaterial data reported in multiple literatures - Characterization methods

gold nanoparticles

Composition: gold

Nanostructure: nanoparticles

Based on 3710 articles and 113 patents (most recent: 2017)

Characterization (3432) Preparation (2451) Property (1871) Application (871) Biological effects (724)

▼ Characterization

Search for a method

Method	Nanomaterial Variant	Source
alternating current	Diameter: ~ 20 nm Medium/Support: none	Experiment in Johannes Walter et al., Nanoscale, 2015
Analytical centrifugation	Diameter: ~ 20 nm Medium/Support: none	Experiment in Johannes Walter et al., Nanoscale, 2015
▼ atomic absorption spectroscopy	Radius: 5 nm Medium/Support: none	Calculation in Yu Luo et al., Proc. Natl. Acad. Sci. USA, 2014
▼ atomic force microscopy	Size: ~ 20 nm Medium/Support: none	Experiment in Satish K. Tuteja et al., Nanoscale, 2017
▼ cathodoluminescence spectroscopy	Edge: 50 nm Thickness: 50 nm Medium/Support: none	Calculation in Losquin, Arthur et al., Nano Lett., 2015

Quick overview of nanomaterial data reported in multiple literatures - Toxicity and biological effects

gold nanoparticles

Composition: gold

Nanostructure: nanoparticles

Based on 3710 articles and 113 patents (most recent: 2017)

Characterization (3432) Preparation (2451) Property (1871) Application (871) Biological effects (724)

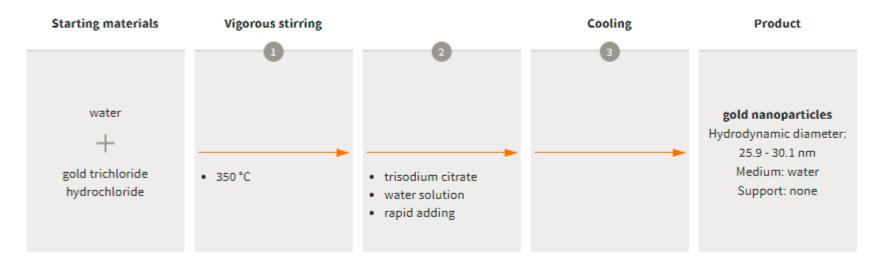
▼ Biological effects

Search for a biological system

Biological system	Test details	Nanomaterial Variant	Source
3-D mouse kidney proximal tubule culture	nontoxic	Size: not specified Medium/Support: none	Astashkina, Anna I. et al., Biomaterials, 2014
3T3-L1 cells	noncytotoxic	Diameter: 25 nm Medium/Support: none	Park, Hyejin et al., Biomaterials, 2014
4T1 cells	noncytotoxic	Diameter: 80 nm Medium/Support: none	Liu, Zhen et al., Biomaterials, 2014
 4T1 tumor-bearing athymic female BALB/c nude mouse 	no effect on body weight, intravenous (iv)	Size: not specified Medium/Support: none	Du, Yang et al., Adv. Mater., 2016
4T1-fLuc tumor cells	cytotoxic upon NIR laser irradiation	Size: not specified Medium/Support: none	Du, Yang et al., Adv. Mater., 2016

Quick overview of nanomaterial data reported in multiple literatures - **Preparation**

gold nanoparticles


Composition: gold
Nanostructure: nanoparticles
Based on 3710 articles and 11
Characterization (3432)

4.2. Synthesis of gold nanoparticles

AuNPs (20 \pm 3 nm; Fig. S12B \pm) were prepared with the sodium citrate method. 43.48 HAuCl₄ (1.25 mL, 4 g L⁻¹) was added into 48.75 mL of ultrapure water with vigorous stirring, and boiled at a high temperature (350 °C). After several minutes, freshly prepared aqueous trisodium citrate solution (1.2 mL, 10 mg mL⁻¹) was added rapidly. After the color of the solution had stabilized, the reaction solution was cooled to room temperature and then stored at 4 °C.

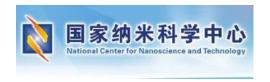
▼ Preparation

Type: Chemical synthesis Source: Aihua Qu et al., Nanoscale, 2017

数据来源:业内专家精选的权威期刊

- ACS Nano, ACS
- Advanced Energy Materials, Wiley
- Advanced Materials, Wiley
- Angewandte Chemie International Edition, Wiley
- Biomaterials, Elsevier
- Chemistry of Materials, ACS
- Journal of the American Chemical Society, ACS
- Nano Energy, Elsevier
- Nanomedicine: Nanotechnology, Biology and Medicine, Elsevier

- Nano Letters, ACS
- Nanoscale, RSC
- Nanotoxicology, Taylor & Francis
- Nature, Nature Research
- Nature Materials, Nature Research
- Nature Nanotechnology, Nature Research
- Proceedings of the National Academy of Sciences of the United States of America, PNAS
- Science, AAAS
- Small, Wiley

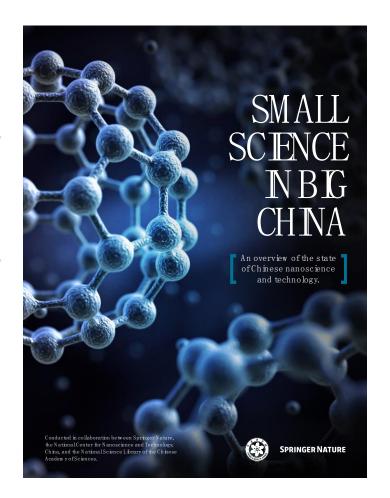


中国纳米科学与技术发展状况概览

施普林格•自然集团、国家纳米科学中心、中国科学院文献情报中心共同合作,编制了中国纳米白皮书,从高水平文献发表、专利申请、重点发展领域分布、国际合作网络等视角,运用大数据分析和可视化方法,综合专家解读和意见,科学详实地揭示出近年来中国和世界纳米科技的发展态势。文章定性分析与定量分析相结合,主观判断与客观数据相印证。该报告,一方面,让我们看到了过去二十年,纳米科技在世界范围得到了很大的发展,对人类社会生活进步产生了巨大影响;另一方面,我们也看到相关领域的变迁和影响。

中国纳米科学与技术发展状况概览

Link for the English version of the White Paper,


https://www.nature.com/press_releases/s mall_science_in_big_china - en.pdf 中文下载链接,

https://www.nature.com/press_releases/s mall_science_in_big_china - ch.pdf

谢谢!

更多信息,请访问: nano.nature.com.

更多问题:

William Chiuman, Ph.D.

Director Product Management, Nanoscience & Technology
Springer Nature Hong Kong
William.Chiuman@springernature.com

Jessie Xiao, Ph.D.

Database Product Specialist, Nanoscience & Technology Springer Nature Beijing Jessie.Xiao@springernature.com

Dr.-Ing. Amir Gheisi

Database Product Specialist, Nanoscience & Technology Springer Nature Heidelberg Amir.Gheisi@springernature.com

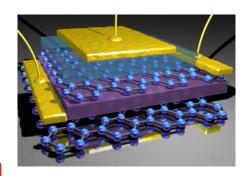
Prathik Roy, Ph.D.

Database Product Specialist, Nanoscience & Technology Springer Nature New York Prathik.Roy@springernature.com

natureresearch

Nanotech Applications in Multi-industries

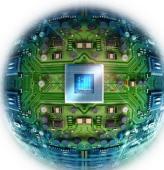
Nanotech for IT and electronics



- Si nanophotonics components into CMOS
- CdSe nanocrystals flexible circuits

Flexible/
Integrated
Circuits

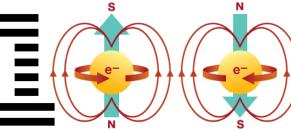
Transistors


- Molecular-sized transistors
- Graphene transistor

Light/Display

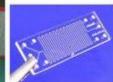
Nanotech in Electronics Industry

New Memories



- Nanoemmissive display panel
- Quantum dots display panel

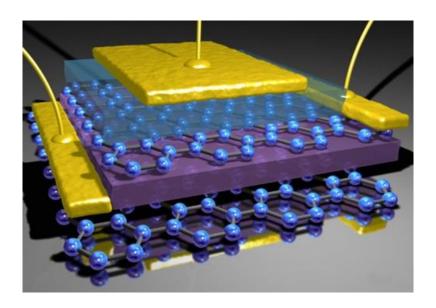
Spintronics


Biosensors

- Magnetoelectric random access memory
- Nanotube-Based NonvolatileRandom Access Memory

- Magnetic quantum dots in spintronics
- GaAs spintronics

- DNA biosensors
- nature research
 Thermal and piezoelectric biosensors


Case study #1 – A general search

Graphene transistor

search query:

Graphene transistor

https://nano.nature.com/search?workflow=article&term=freeText%3A%22 Graphene+transistor%22&new-search=true

Graphene transistor

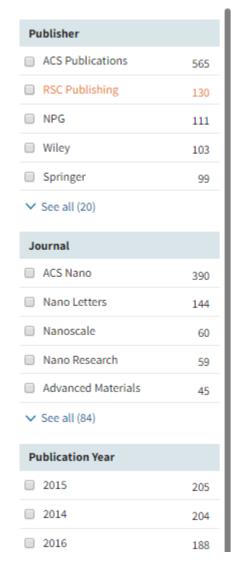
Publisher	
ACS Publications	565
RSC Publishing	130
■ NPG	111
☐ Wiley	103
Springer	99
➤ See all (20)	
Journal	
ACS Nano	390
Nano Letters	144
Nanoscale	60
Nano Research	59
 Advanced Materials 	45
✓ See all (84)	
Publication Year	
□ 2015	205

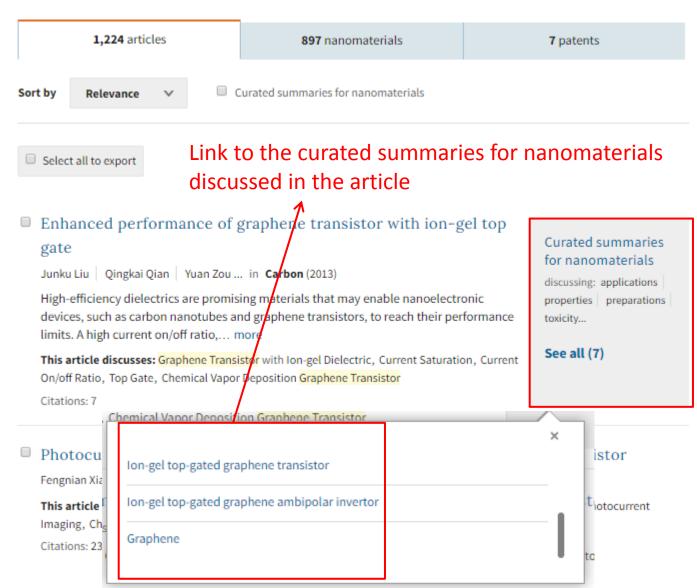
204

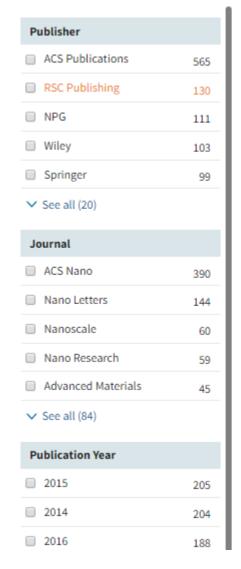
188

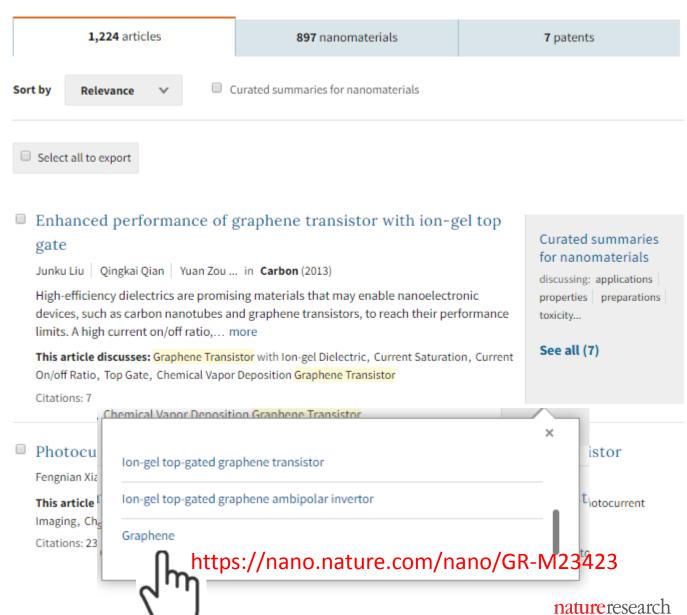
Imaging, Channel

Citations: 237


2014


2016


	1,224 articles	897 nanomaterials	7 patents
ort by	Relevance ∨	Curated summaries for nanomaterials	
Selec	et all to export	 Gain quick insights incomprehensial 	,
D-1-		search input	4.0
gate	9	ce of graphene transistor with ion-gel	Curated summaries for nanomaterials discussing: applications
devic	•	e promising materials that may enable nanoelectroni otubes and graphene transistors, to reach their perfor atio, more	mance toxicity
		<mark>ne Transistor</mark> with Ion-gel Dielectric, Current Saturation, cal Vapor Deposition <mark>Graphene Transistor</mark>	Current See all (7)
Citati	ons: 7		


This article discusses: Graphene Transistor with Photocurrent, Gate Bias, Photocurrent Imaging, Scanning Photocurrent

Fengnian Xia Thomas Mueller Roksana Golizadeh-Mojarad ... in Nano Letters (2009)

graphene From 3631 articles and patents

Nanostructure	Size	Experimentally confirmed?
nanosheets	-	Yes

Summary

from 3631 articles and patents

Properties

Characterization

Toxicity and other biological effects

Preparation

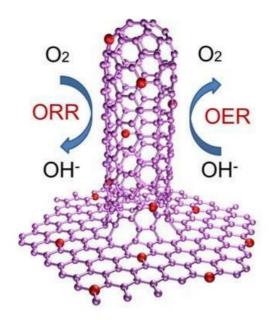
Applications

Patent claims

References

▼ Applications

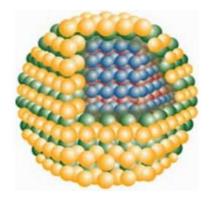
Application	Area	Specific application	Experimentally confirmed	Source
field effect transistor layer	electronics	-	yes	Pawan Kumar Srivastava and Subhasis Ghosh 2015
field effect <mark>transis</mark> tor material	electronics	-	yes	S. J. Zhang et al. 2016 Junjie Shi et al. 2015
field electron emission devices	tools/devices	-	no	Bertóti, Imre et al. 2015
field-effect <mark>transis</mark> tor (FET) channel material	electronics	-	yes	Ovoiry, Damien et al. 2016
field-effect <mark>transis</mark> tor channel layer	electronics	-	no	Nikolai Dontschuk et al. 2015
field-effect transistors	electronics	channel layer	no	Ago, Hiroki et al. 2016
field-effect transistors	electronics	channel material	no	☐ Jae Hoon Bong et al. 2014
field-effect transistors	electronics	connecting electrodes and channel	yes	Chuang, Hsun-Jen et al. 2014
field-effect transistors	electronics	conducting layer	yes	☐ Kim, Sung-Soo et al. 2015


Nanotech for Chemical Manufacturing

Nanotechnologies in Chemical Manufacturing²

A key objective of nanocatalysis research is to produce catalysts with 100% selectivity, extremely high activity, low energy consumption, and long lifetime.

Rational hybridization of N-doped graphene/carbon nanotubes for oxygen reduction and oxygen evolution reaction



Application of nanotechnologies in chemical manufacturing, e.g., nanocatalysis

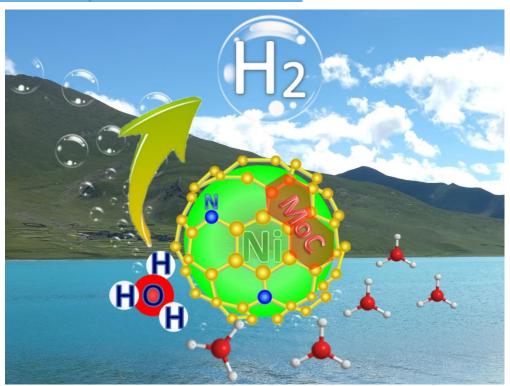
Core-shell Evido

- Nanocrystals
- 2-10 nm diameter
- · semiconductors

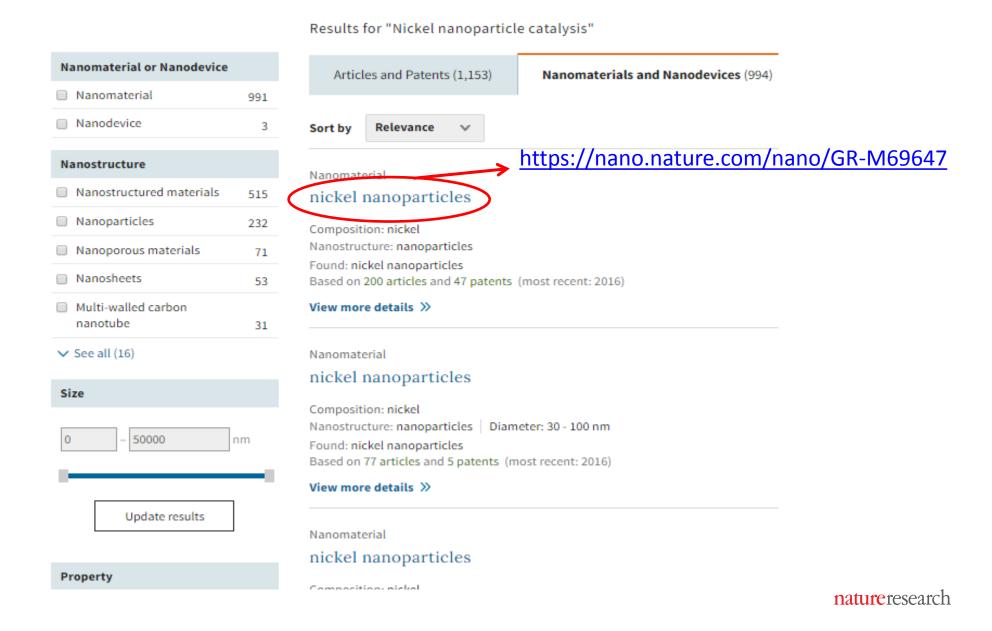
Recent development of using the traditional noble metals in their nano forms as nanocatalysts in the reduction of nitroarenes

natureresearch

²Nanocatalysis: Applications in the chemical industry, http://www.nanowerk.com/.


Case study #1 – A general search

The catalysis of nickel nanoparticle


search query:

Nickel nanoparticle catalysis

https://nano.nature.com/search?workflow=nanoObject&term=Nickel+nanoparticle+catalysis&new-search=true

Found summary below and was satisfied:

Properties

nickel nanoparticles \equiv Table of contents

Catalytic properties

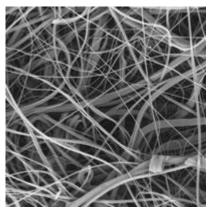
View as table

View as list

Reaction	Characteristics studied	Reaction catalysis	Rate constant	Reaction order	Dependent on	Source
4-Nitrophenol reduction	catalytic activity	catalyzed by the nanomaterial	0.0007 s ⁻¹ [0.042 min ⁻¹]	pseudo first order	_	☐ Tian, Ye et al. 2015
aryl ether hydrogenation	productivity product selectivity	catalyzed by the nanomaterial	-	-	_	
carbon nanotube cutting	activation energy	catalyzed by the nanomaterial	-	-	-	☐ Irina V. Lebedeva et al. 2014
electrochemical hydrogen evolution reaction	catalytic activity	catalyzed by the nanomaterial	-	-	-	■ Wang, Xueqin et al. 2015
hydrolysis reaction of ammonia borane	turnover frequency	catalyzed by the nanomaterial	-	-	-	Guanqi Zhao et al. 2015

Synthesis

Method 1


Type: Chemical synthesis Source: Handa, Sachin et al. 2015 (Angew. Chem., Int. Ed.)

Nanotech for Auto

Nanotechnologies in Automotives¹

Nanofilters for clean air in the interior of the car!

nanowerk.com

Comfort

- Passenger wellness
- Product attractiveness
- Easy care, ...

Environment

- Resource efficiency
- Hydrogen & fuel cells
- Catalysts

Autocatalyst-recycling.umicore.com

Exhaust emission catalyst for the reduction of exhaust emissions!

Application of nanotechnologies in automotives

Safety

- Active safety
- Passive safety
- Easy to clean, ...

Safer rear view with nanocoating!

¹ hessen-nanotech.de

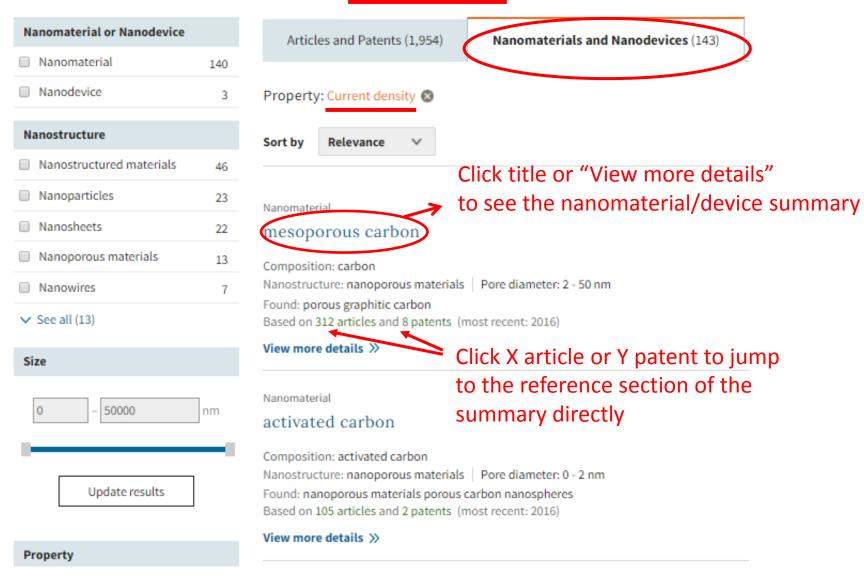
Case story:

Search for literatures reporting on batteries for fuel cells, and see what nanomaterials can be candidates for batteries with high performance, such as high current density.

Solution – go to nano.nature.com

For example, the search query can be "Porous materials battery" and refined by property "current density". Shown below is a table listing the sought literatures by doing this search query

(https://nano.nature.com/search?workflow=nanoObject&term=Porous+materials+batt ery&property=current%20density):

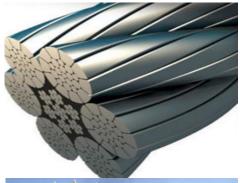

More area = more power

VS.

Results for "Porous materials battery" Nanomaterial/device result set

Relevant application in batteries can be found by accessing one summary of "mesoporous carbon", for example (https://nano.nature.com/nano/GR-M278369):

mesoporous carbon


batter 1 of 30

antipyrine delivery	drug delivery	-	yes	≧ Saha, Dipendu et al. 2014
aqueous symmetric supercapacitors	energy storage devices	electrode material	yes	Hasegawa, George <i>et al.</i> 2016
<mark>batter</mark> ies	power generation	-	no	Natalia Rey-Raap et al. 2014
<mark>batter</mark> ies	energy storage devices	-	no	☐ Taubert, Michael et al. 2014
biological applications	diagnostics	-	no	Matei Ghimbeu, Camelia et al. 2015
biomolecule adsorbent	adsorbents/absorbers/io n exchange materials	_	no	Borchardt, Lars et al. 2014
blood purification	medicine/veterinary	-	no	Romero-Anaya, A.J. et al. 2014
brackish water desalination	other	capacitive deionization electrode material	yes	Yang, Seung Jae et al. 2014
bromine-based <mark>batter</mark> y cathode material	energy storage devices	_	yes	☐ Wang, Chenhui et al. 2016
capacitor electrodes	electrodes/electrolytes	-	no	Li, Xiaoan et al. 2015
capacitor fabrication	energy storage devices	-	no	PCT patent WO/2014/186207, 20 Nov 2014

Nanotech for Steel and Glass

Nanotech for Steel and Glass^{3,4}

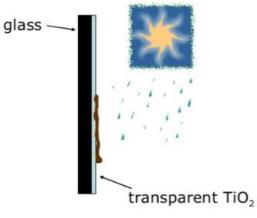
High strength steel cables

High-strength Zn—Al coated steel Or vanadium and molybdenum nanoparticles doped steel

³Dubai Nanotech 2013, Nanoscale-based Concepts for Innovative and Eco-Sustainable Constructive Materials: Challenges and Opportunities for Energy and **Environment Applications.**

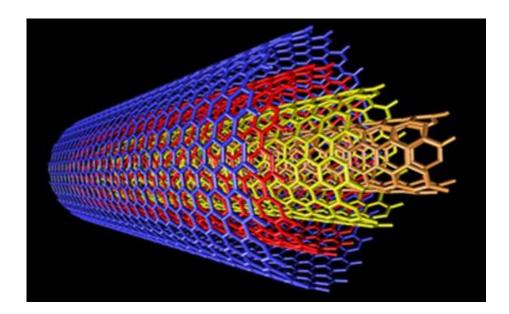
4www.3Ders.org

NanoSteel uses 3D metal printer to build high complexity parts


Application of nanotechnologies in Steel and Glass

Coatings - Inorganic

Self-cleaning glass Nano-TiO, coated


Case study #1 – A general search

The utilization of nanoscience and nanotechnology in steel translates to enhancement in the properties of steels e.g. tensile strength of steel

Search for the latest literatures reporting tensile strength and stress of multiple walled carbon nanotubes (MWCNT).

Solution – go to nano.nature.com, search "MWCNT".

Shown below is a table listing the strength and stress of MWCNT. Links to relevant sources can be found in one view.

Properties

MWCNT Table of contents

stiffness	value given	_	experiment	Pour Shahid Saeed Abadi, Parisa et al. 2014
storage modulus	value given	_	experiment	Yue, Liang et al. 2014
stress	value given	wet-dry cycle number	experiment	Pour Shahid Saeed Abadi, Parisa et al. 2014
surface tension energy	value given	_	experiment	Dong Hyup Park et al. 2013
temperature- programmed desorption spectrum	value given	_	experiment	Likodimos, Vlassis <i>et al.</i> 2014
tensile strength	value given	_	experiment	Gong, Shanshan et al. 2015 Thang, Bin et al. 2016
tensile stress	value given		experiment	 □ Gong, Shanshan et al. 2015 □ Pan, Zhiyong et al. 2016 □ U.S. patent US20140011007, 9 Jan 2014 □ Lamei, He et al. 2014